

An Integrated Approach to Boiler Optimization

Presented by:

Joe Naberhaus - Dynegy

Peter Spinney - NeuCo

Reinhold NOx Roundtable & Expo February 6, 2007

Agenda

- Optimization Overview
- Integrated Boiler Optimization
- Boiler Optimization Project at Baldwin

1

Role of Optimization

- The process of turning reams of complex data into actionable knowledge that delivers bottom line benefit
- An Optimizer Must:
 - ACT: continuously identify actions that can improve asset performance
 - INFORM: provide insight into what actions were taken or advice given and why
 - QUANTIFY: the benefits & missed opportunities

Data Sources:

ERPs (e.g. SAP)
CMMSs (e.g. Maximo)

Monitors (e.g. GeneralPhysics)
Analyzers (e.g. Zolo)
Detectors (e.g. SmartSignal)
Historians (e.g. OSI)
DCSs (e.g. ABB)

Types of Optimizers

- NeuCo currently has 4 commercially-available Optimizers:
 - CombustionOpt®: Optimizes fuel & air mixing to lower emissions and improve heat rate
 - SootOpt®: Optimizes sootblowing activity to improve reliability, heat rate and emissions
 - **PerformanceOpt®:** Identifies efficiency and capacity bottlenecks and the actions required to control the corresponding losses
 - MaintenanceOpt™: A diagnostics center for the detection, diagnosis and prioritization of maintenance problems
- And there are more on the way:
 - DOE CCPI-2 NRG Texas Limestone
 - Customer Teaming

Importance of an Integration Platform

- Integrating disparate data and knowledge sources
- Standardizing metrics allowing performance comparisons and tradeoffs across equipment, units and plants
- Coordinating actions towards common business objectives, instead of competing
- Prioritizing the most important actions you can take to achieve your objectives
- Creating transparency and accountability by bridging islands of information and understanding

Agenda

- Optimization Overview
- Integrated Boiler Optimization
- Boiler Optimization Project at Baldwin

What does Integrated Boiler Optimization Mean?

- Integrated optimal operation of combustion, boiler cleanliness, steam temperatures, and total boiler performance
- Real-time management of multiple objectives, constraints, and tradeoffs:
 - Monetized objectives
 - Coordination of individual Optimizers toward global objectives
 - Sharing real-time knowledge between multiple solutions
 - CombustionOpt
 - SootOpt
 - PerformanceOpt
 - MaintenanceOpt
- Recognition that priorities and operating conditions change in dynamic and complex ways

Integrated Boiler Optimization Benefits

- Ensuring that total operating costs are minimized in face of changing conditions and cost factors
- Adhering to all applicable constraints
- Integration of real-time operations with maintenance needs
- Managing tradeoffs between instantaneous and longerterm costs and financial performance
- Making the whole more than the sum of the parts!

Boiler Optimization Components

- Optimizers
 - CombustionOpt
 - SootOpt
- Technologies
 - Neural Networks
 - Model Predictive Control
 - Expert Systems/Heuristics
 - Simulation Engine
 - Integrated Object Library
 - Analysis Tools

CombustionOpt Overview

Context:

Combustion controls manipulate a few variables (such as O2) as a function of load, leaving 35-100 fuel and air injection points that significantly impact combustion performance to infrequent offline tuning or operator tweaking

What CombustionOpt Does:

Provides real-time closed-loop optimization of fuel and air mixing by manipulating all relevant fuel and air injection points

Using:

Neural network and model predictive control technologies

To Achieve:

NOx, heat rate, steam temp, CO and opacity improvements

CombustionOpt Home

CombustionOpt Analysis

SootOpt Overview

Context:

Sootblowing controls rely on interval-based or operator-initiated cleaning actions, or when using intelligent sootblowing systems, rely on zone cleanliness set points, ignoring the fact that optimal heat transfer requires varying cleanliness over time and across zones

What SootOpt Does:

 Provides real-time closed-loop optimization of unit performance by manipulating all relevant sootblowing controls

Using:

 Expert systems, neural networks and model predictive control

To Achieve:

 Reliability, heat rate, steam temp and emissions improvements

A COLOR

SootOpt Home

SootOpt Analysis

Visibility into Heuristics

DYNEGY

SootOpt Tools

Agenda

- Optimization Overview
- Components of Integrated Boiler Optimization
- Boiler Optimization Project at Baldwin

Dynegy's Baldwin Energy Complex

3 - 600 MW Units 1970-1975

Units 1 & 2 Cyclone Fired 14 Cyclones/Unit

Unit 3 Tangential-Fired 6 Mills

PRB Coal
Conversions
1999 & 2000

NeuCo's CCPI Project @ Baldwin

- About the Clean Coal Power Initiative (CCPI)
 - \$1.3 B initiative to demonstrate clean coal technologies in the field
 - Sponsored by DOE's National Energy Technology Laboratory
 - NeuCo's project at Baldwin selected as Round 1 winner in 2004
- Five integrated optimization modules, parallel development
 - SCR
 - Combustion
 - Soot blowing
 - Performance
 - Maintenance
- Products developed iteratively with multiple releases

Baldwin Unit 3

- CE Drum-type Boiler
- Pulverized T-Fired: Six Pulverizers
- Furnace Dimensions: 52' x 58', 180' tall
- SOFA, Low NOx Burners
- Steam Conditions
 - Flow: 4.2 MLb/Hr
 - SH/ RH Temperature: 1005F/1005F
 - Throttle Pressure: 2425 Psig

Motivations for Optimization

- Full Load PRB operation requires tight control
 - Loss of spare mill at full capacity
 - Small process changes have significant effects
 - Seasonal impacts to heat rate

Expectations

- Ability to control key parameters on consistent basis
- Ability to compensate for changes in coal quality
- Improved understanding of available data and its use for improved operations
- Ability to optimize controls to meet plant objectives

Initial CombustionOpt Benefits

- Reduction in NOx average and variability
 - BEC Unit 3 already one of the lowest NOx coal-fired units in North America
- Increased process knowledge
- Improved consistency across operators and shifts
- Empirical validation of boiler cleanliness interactions

Unit 3 Sootblowing Operation prior to SootOpt

- High variability in PRB coal
- Water Cannons and Heat Flux Sensors in Furnace area
- PrecisionClean and standard IK's in convection pass
- Diamond (ASI) control system to operate water cannons & sootblowers
- Prevailing sootblowing guidelines:
 - Water cannons operator initiated when attemperation sprays high
 - Operator initiated sequences in the convection pass normally a sequence of most IK's running continuously
 - Monitor furnace-to-economizer and furnace-to-reheater differential pressures; Increase sootblowing if differentials increase

Baldwin 3 - Ash Deposition

PRB Coal

- Intermittent Wall Deposition
- Division Panels
- SH Pendant
- Horizontal SH

ISB & SootOpt installation @ Unit 3

- Upgraded sootblowing controls to Diamond SentrySeries
 1500 Intelligent Sootblowing Control System (ISB)
- Added thermocouples and thermo-probe behind pendent reheater for heat transfer calculations
- Installed NeuCo's SootOpt for adaptive optimization of sootblowing operation
- Integrated SootOpt with Diamond furnace (FCM), backpass (SCE) and Automatic Interface module (AIM)

SootOpt - Diamond SentrySeries 1500 Interface

Diamond Intelligent Sootblowing System

SootOpt/ISB Interaction

Improved Model Fidelity with CombustionOpt & SootOpt Integrated

Improved Model Fidelity with CombustionOpt & SootOpt Integrated

CombustionOpt Impact on NOx

Combined Impact on NOx

CombustionOpt Impact on Heat Rate

Combined Impact on Unit Heat Rate

Average Daily Attemperation Spray Flows

IK Activity Manual vs ISB/SootOpt

SootOpt Helps Detect Underlying Problems:

Increased Furnace/Convection Pauses Due to FEGT < 1900 f.

Boiler Optimization Results Thus Far

- Improved NOx and Heat Rate with decreased variability
- Decreased sootblower operation count
- Attemperation spray flows controlled to less than 50 klbhr with SootOpt/ISB whereas before spray flows would at times be above 100 klbhr
- Initially split in attemperation flow control caused steam temps drop to 950F which could effect MW output. Recent changes have reduced that drop to 980F
- Provided early detection into anomalies in ISB activity caused by instrumentation failure
- Improved transparency into complex behavior of ISB
- Real-time tradeoffs between objectives and performance benchmarking

Looking Ahead

- Complete Integration of CombustionOpt and SootOpt and at Unit 3
- Complete installation of SootOpt on Unit 2
- Integrate CombustionOpt, SCR-Opt, SootOpt, PerformanceOpt and MaintenanceOpt at Unit 2
- Further refine CombustionOpt, PerformanceOpt & MaintenanceOpt at Unit 1
- Further refine Unit and Plant Advisors
- Subsequent refinement and releases based on feedback from Baldwin and other NeuCo Showcase sites